Feature Ensemble Networks with Re-ranking for Recognizing Disguised Faces in the Wild

Arulkumar Subramaniam¹, Ajay Narayanan¹ and Anurag Mittal

Indian Institute of Technology Madras (IITM), Indian Institute of Information Technology Design & Manufacturing Kancheepuram (IIITDM)

December 30, 2021

¹equal contribution

Overview

1 Challenges

2 Observations in the problem domain

3 Pipeline

- Pre-processing & Base models
- Model Architecture
- Objective functions
- Post-Processing

Results

5 Conclusions and Future work

Challenges in Face recognition task include,

- Natural challenges (as any other CV tasks):
 - Illumination
 - Pose
 - Background Clutter

э

Challenges in Face recognition task include,

- Natural challenges (as any other CV tasks):
 - Illumination
 - Pose
 - Background Clutter
- Subject-specific challenges: Intentional or un-intentional disguises such as
 - Wearables like Eye-glasses, Masks, Hats etc.,
 - Make-up
 - Plastic surgery

• FaceNet²

- $\bullet\ {\sf ZF}{\sf -Net}^3$ and ${\sf GoogleNet}^4$ architectures with Triplet loss
- L2 distance comparison
- IR50
 - Extension of SE-ResNet50 architecture with ArcFace loss⁵ and Focal loss⁶.

²Florian Schroff, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015, pp. 815–823.

³Matthew D Zeiler and Rob Fergus. "Visualizing and understanding convolutional networks". In: *European conference on computer vision*. Springer. 2014, pp. 818–833.

⁴Christian Szegedy et al. "Going deeper with convolutions". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015, pp. 1–9.

⁵ Jiankang Deng et al. "ArcFace: Additive Angular Margin Loss for Deep Face Recognition". In: *arXiv preprint arXiv:1801.07698* (2018). ⁶ Tsung-Yi Lin et al. "Focal Loss for Dense Object Detection". In: *arXiv:1708.02002* (2017).

• Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?

⁷Zhun Zhong et al. "Re-ranking person re-identification with k-reciprocal encoding". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 1318–1327. ←□ → ⟨𝔅⟩ → ⟨

- Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?
- **Re-ranking methods** exploit the neighborhood information among the query and gallery instances

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

- Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?
- **Re-ranking methods** exploit the neighborhood information among the query and gallery instances
- Prevalent in retrieval tasks like Person Re-Identification to improve performances in an unsupervised way.

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

- Instead of comparing individual images, what if we **take the neighborhood** of the Gallery (or database) images into account?
- **Re-ranking methods** exploit the neighborhood information among the query and gallery instances
- Prevalent in retrieval tasks like Person Re-Identification to improve performances in an unsupervised way.
- k-reciprocal nearest neighbor re-ranking⁷ is popular in retrieval tasks

Arulkumar, Ajay et al. (IITM, IIITDM)

⁷Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

"Re-ranking" intuition

Figure: Probe-to-Gallery comparison

э

"Re-ranking" intuition

Figure: Probe-to-Gallery comparison and exploit neighborhood within gallery

э

Our contributions are as follows:

- We propose a Feature EnsemBle Network (FEBNet)- an ensemble of multiple state-of-the-art face recognition networks
- Two loss functions
 - Impersonator Triplet loss
 - Category loss
- Usage of re-ranking strategy

Feature Ensemble Network (FEBNet) Pipeline

We use two methods for landmark detection and alignment:

- dlib⁸
- MTCNN⁹

Three pretrained base models:

- $IR50_D = IR50^{10} + dlib$ (pre-processing)
- **IR50**_M = IR50 + MTCNN (pre-processing)
- FaceNet-Incep-ResNet-v1¹¹

⁸Davis E. King. "Dlib-ml: A Machine Learning Toolkit". In: Journal of Machine Learning Research 10 (2009), pp. 1755–1758.

⁹K. Zhang et al. "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks". In: *IEEE Signal Processing Letters* 23.10 (Oct. 2016), pp. 1499–1503. ISSN: 1070-9908. DOI: 10.1109/LSP.2016.2603342.

¹⁰ Jian Zhao. High-Performance Face Recognition Library on PyTorch. https://github.com/ZhaoJ9014/face.evoLVe.PyTorch. 2018.
¹¹ Szegedy et al., "Going deeper with convolutions"; Kaiming He et al. "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

Base models

IR50:

- an extension of SE-ResNet50¹² model
- pretrained on MS-Celeb-1M¹³ dataset
- pretraining objective functions: ArcFace loss¹⁴ and Focal loss¹⁵

FaceNet-Incep-ResNet-v1:

- Inception model with residual connections
- pretraining datasets: "VGGFace2"¹⁶
- pretraining objective functions: person classification loss (cross-entropy) & Triplet loss

¹² Jie Hu, Li Shen, and Gang Sun. "Squeeze-and-excitation networks". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–7141.

¹³Adam Harvey and Jules LaPlace. MegaPixels: Origins, Ethics, and Privacy Implications of Publicly Available Face Recognition Image Datasets. 2019. URL: https://megapixels.cc/ (visited on 04/18/2019).

¹⁴Deng et al., "ArcFace: Additive Angular Margin Loss for Deep Face Recognition".

¹⁵Lin et al., "Focal Loss for Dense Object Detection".

16Q. Cao et al. "VGGFace2: A dataset for recognising faces across pose and age". In: International Conference on Automatic Face and Gesture Recognition. 2018.

Performance of base models before fine-tuning

	GAR ¹⁷								
	Ø	1%FAR	18	@0.1%FAR					
Models		Protoco		Protocol					
wouers	1	2	4	1	2	4			
$IR50_D$	96.47	80.42	80.73	44.70	70.32	69.85			
IR50 _M	67.58	79.22	81.27	40.83	72.62	70.61			
FaceNet	79.83	72.48	72.61	45.04	50.15	49.17			

Table: Performance of base models without fine-tuning on training dataset

Arulkumar, Ajay et al. (IITM, IIITDM)

э

・ロト ・ 一下・ ・ ヨト ・

 $^{^{17}\}mathsf{GAR}=$ Genuine Acceptance Rate

 $^{^{18}}$ FAR = False Acceptance Rate

The pretrained base models are fine-tuned using training dataset¹⁹ with the aid of four objective functions as follows:

- Identity Loss
- Inter-person Triplet Loss
- Category Loss
- Impersonator Triplet Loss

¹⁹Maneet Singh et al. "Recognizing Disguised Faces in the Wild". In: IEEE Transactions on Biometrics, Behavior, and Identity Science, Volume 1, No. 2. 2019, pp. 97–108.

Objective functions

• **Cross-entropy loss L**_{id}: loss between the softmax probability output p_i from the model and the target identity.

$$L_{id} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} t_{ij} \log p_{ij}$$
(1)

Here, N = number of face images in the mini-batch, M = number of identities in train-set.

• Inter-person Triplet Loss L_{trip}: To promote small intra-class distance and high inter-class distance.

$$L_{trip} = \frac{1}{N} \sum_{i=1}^{N} max(0, d(I_i, I_{i+}) - d(I_i, I_{i-}) + m)$$
(2)

Here m = margin parameter, d(i,j) = distance between embeddings i & j (Here, we use Euclidean distance).

Arulkumar, Ajay et al. (IITM, IIITDM)

• **Category Loss L**_{cat}: To discriminate the impersonator images of the identities. Two classes namely 1) Normal-validation-disguise class, 2) Impersonator class.

$$L_{cat} = -y \log p - (1 - y) \log(1 - p)$$
(3)

• Impersonator Triplet Loss L_{imp}: loss to distinguish a particular identity from it's impersonator.

$$L_{imp} = \frac{1}{N} \sum_{i=1}^{N} max(0, d(I_i, I_{i+}) - d(I_i, I_{imp}) + m)$$
(4)

Here m = margin parameter, d(i,j) = distance between embeddings i & j (In this paper, Euclidean distance).

The overall objective function/total loss is given by:

$$L = \gamma_1 L_{id} + \gamma_2 L_{trip} + \gamma_3 L_{imp} + \gamma_4 L_{cat}$$
(5)

The ratios $\gamma_1 = 1.0, \gamma_2 = 0.5, \gamma_3 = 0.1, \gamma_4 = 0.01$ are selected using validation set.

- L2-normalized feature vectors are extracted from the base models independently
- Concatenate them to get the final feature descriptor
- Euclidean distance to get distance matrix
- Apply Re-ranking²⁰ to get the final distance matrix.

²⁰Zhong et al., "Re-ranking person re-identification with k-reciprocal encoding".

Performance of ensemble of fine-tuned models

Architecture		GAR							
0	5	et	(01%FAF	2	@0.1%FAR			
50/		leN		Protoco		Protocol			
R	R	Fac	1	2	4	1	2	4	
		\checkmark	80.33	73.80	74.37	45.37	52.57	51.87	
	\checkmark		66.38	81.81	82.27	05.71	73.87	72.97	
	\checkmark	\checkmark	91.93	83.11	83.50	52.77	71.86	70.07	
\checkmark			93.94	83.16	83.37	48.40	70.12	69.05	
\checkmark		\checkmark	93.61	84.30	84.44	53.10	71.24	69.66	
\checkmark	\checkmark		94.62	85.42	85.56	53.44	75.07	73.72	
\checkmark	\checkmark	\checkmark	95.79	86.19	86.25	56.30	75.25	73.42	

Table: Performance of various configurations of ensemble architectures

3

Image: A math a math

Analysis of objective functions

Los	ses	GAR						
	0		@1%FAR	@0.1%FAR				
C	in.		Protocol		Protocol			
7	7	1	2	4	1	2	4	
		95.46	86.22	86.42	54.95	75.10	73.33	
	\checkmark	95.79	86.37	86.34	54.11	75.13	73.37	
\checkmark		95.12	86.31	86.39	55.63	75.16	73.29	
\checkmark	\checkmark	95.79	86.19	86.25	56.30	75.25	73.42	

Table: Performance comparison of various configurations of ensemble architectures with the proposed objective functions: Impersonator Triplet loss (L_{imp}), Category loss (L_{cat})

э

-

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Input: Calculated distance matrix D_{orig} ($Q \times G$), Q = number of query images, G = number of gallery images

 $^{^{21}\}mathsf{Zhong}$ et al., "Re-ranking person re-identification with k-reciprocal encoding".

Input: Calculated distance matrix D_{orig} ($Q \times G$), Q = number of query images, G = number of gallery images **Steps:**

- k-reciprocal nearest neighbors pruning:
 - $\bullet\,$ Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter $=k_1)$ neighbor to the probe

 $^{^{21}\}mathsf{Zhong}$ et al., "Re-ranking person re-identification with k-reciprocal encoding".

Input: Calculated distance matrix D_{orig} ($Q \times G$), Q = number of query images, G = number of gallery images **Steps:**

- k-reciprocal nearest neighbors pruning:
 - Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter = k_1) neighbor to the probe
- New Feature formulation
 - For each image (probe (query) and gallery), formulate a G-dim descriptor

$$f_{p,g_i} = egin{cases} e^{-d(p,g_i)} & ext{if } g_i \in ext{k1-NN} ext{ of probe } p \ 0 & ext{otherwise} \end{cases}$$

Arulkumar, Ajay et al. (IITM, IIITDM)

 $^{^{21}\}mathsf{Zhong}$ et al., "Re-ranking person re-identification with k-reciprocal encoding".

Re-ranking - continuation

- Iocal query expansion
 - each image's feature is approximated by

$$f_{p} = \frac{1}{k_2} \sum_{i=0}^{k_2} f_{NN_i}$$

• Jaccard distance (D_{jac}) calculation

$$d_{jac}(p,g_i) = 1 - rac{\sum_{j=1}^N \min(f_{(p,g_j)}, f_{(g_i,g_j)})}{\sum_{j=1}^N \max(f_{(p,g_j)}, f_{(g_i,g_j)})}$$

э

Re-ranking - continuation

- Iocal query expansion
 - each image's feature is approximated by

$$f_{
ho}=rac{1}{k_2}\sum_{i=0}^{k_2}f_{
m NN_i}$$

• Jaccard distance (D_{jac}) calculation

$$d_{jac}(p,g_i) = 1 - rac{\sum_{j=1}^{N} \min(f_{(p,g_j)}, f_{(g_i,g_j)})}{\sum_{j=1}^{N} \max(f_{(p,g_j)}, f_{(g_i,g_j)})}$$

Essentially, it is similar to,

$$d_{jac}(p,g_i) = 1 - rac{\mathsf{Count of intersection of neighbours}}{\mathsf{Count of union of neighbors}}$$

③ Distance fusion : $D_{\textit{final}} = (1 - \lambda) D_{\textit{jac}} + \lambda D_{\textit{orig}}$

Application of re-ranking in face recognition

Hyper-parameters		GAR							
			(21% FA	R	@0.1% FAR			
k_1	$k_1 k_2$	λ		Protoco		Protocol			
			1	2	4	1	2	4	
	E	0.6	95.46	88.64	88.69	56.97	83.88	82.57	
23	5	0.7	96.30	88.35	88.49	57.14	82.88	81.68	
23	6	0.6	95.29	88.74	88.83	54.11	84.13	82.88	
	0	0.7	95.96	88.41	88.60	53.78	83.21	82.00	
	Б	0.6	95.46	88.68	88.75	57.64	83.85	82.44	
24	24 5	0.7	96.47	88.27	88.42	56.97	82.85	81.70	
24	6	0.6	95.83	88.77	88.87	56.13	84.13	82.77	
		0.7	96.30	88.42	88.54	55.29	83.13	81.90	
FEBNet (No re-ranking)		95.79	86.19	86.25	56.30	75.25	73.42		

Table: Hyper parameter search for re-ranking method on the final model. Here, k_1 = the count for finding k-reciprocal nearest neighbors, k_2 = count for k-reciprocal nearest neighbor expansion, λ = ratio of importance given to original distance matrix with respect to jaccard distance during re-ranking.

3

イロト 不得下 イヨト イヨト

Comparison with state-of-art

			GA	٩R			
	(01%FA	२	@0.1%FAR			
Models		Protoco	l	Protocol			
Wodels	1	2	4	1	2	4	
MiRA-Face	95.46	90.65	90.62	51.09	80.56	79.26	
UMDNets	94.28	86.62	86.75	53.27	74.69	72.90	
FEBNet (Ours)	95.83	88.77	88.87	56.13	84.13	82.77	

Table: Comparisons of FEBNet with state-of-art on DFW2018 dataset

	GAR							
Madal	@0.1% FAR				@0.01% FAR			
Woder	Protocol				Protocol			
	1	2	3	4	1	2	3	4
ResNet-50	47.6	35.4	46.4	35.9	38.4	16.4	22.4	16.9
LightCNN-29v2	74.4	55.6	69.2	55.7	51.2	36.9	47.2	36.5
FEBNet (ours)	54.8	92.3	78.8	90.8	42.4	87.7	47.6	73.7

Table: Test dataset (DFW2019 dataset) results a state of the second seco

- Transfer learning based ensemble model
- Two new loss functions apart from prevalent person-id based cross entropy and inter-person triplet loss
- Application of re-ranking to DFW

Future work: What if we augment the face images with disguising effects? Will it help?

Thank you!

Э

イロト 人間ト イヨト イヨト