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Challenges

Challenges in Face recognition task include,

e Natural challenges (as any other CV tasks):
o Illumination
o Pose
e Background Clutter
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Challenges

Challenges in Face recognition task include,

e Natural challenges (as any other CV tasks):
o Illumination
o Pose
e Background Clutter

@ Subject-specific challenges:
Intentional or un-intentional disguises such as
o Wearables like Eye-glasses, Masks, Hats etc.,
o Make-up
o Plastic surgery
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Prior deep learning approaches in Face Recognition

@ FaceNet?

o ZF-Net3 and GoogleNet* architectures with Triplet loss
e L2 distance comparison

o IR50
o Extension of SE-ResNet50 architecture with ArcFace loss® and Focal loss®.

2Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified embedding for face recognition and clustering”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 815-823.

3Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional networks”. In: European conference on computer
vision. Springer. 2014, pp. 818-833.

4Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 1-9.

®Jiankang Deng et al. “ArcFace: Additive Angular Margin Loss for Deep Face Recognition”. In: arXiv preprint arXiv:1801.07698 (2018).
6Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: arXiv:1708.02002 (2017).
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Application of “Re-ranking” to retrieval tasks

@ Instead of comparing individual images, what if we take the neighborhood of the
Gallery (or database) images into account?

"Zhun Zhong et al. “Re-ranking person re-identification with k-reciprocal encoding”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 1318-1327.
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Application of “Re-ranking” to retrieval tasks

@ Instead of comparing individual images, what if we take the neighborhood of the
Gallery (or database) images into account?

@ Re-ranking methods exploit the neighborhood information among the query and gallery
instances

@ Prevalent in retrieval tasks like Person Re-Identification to improve performances in an
unsupervised way.

o k-reciprocal nearest neighbor re-ranking’ is popular in retrieval tasks

"Zhong et al., “Re-ranking person re-identification with k-reciprocal encoding”.
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-ranking” intuition

Gallery

Figure: Probe-to-Gallery comparison
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“Re-ranking” intuition

Gallery

Figure: Probe-to-Gallery comparison and exploit neighborhood within gallery
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Contributions

Our contributions are as follows:
@ We propose a Feature EnsemBle Network (FEBNet)- an ensemble of multiple
state-of-the-art face recognition networks
@ Two loss functions
o Impersonator Triplet loss
o Category loss

@ Usage of re-ranking strategy
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Feature Ensemble Network (FEBNet) Pipeline

Face detection &
alignment
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Pre-processing & Base models

We use two methods for landmark detection and alignment:
o dlib®
e MTCNN?®

Three pretrained base models:
e IR50p = IR50% + dlib (pre-processing)
e IR50) = IR50 + MTCNN (pre-processing)
o FaceNet-Incep-ResNet-v111

8Davis E. King. “Dlib-ml: A Machine Learning Toolkit". In: Journal of Machine Learning Research 10 (2009), pp. 1755-1758.

oK. Zhang et al. “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks”. In: |[EEE Signal Processing
Letters 23.10 (Oct. 2016), pp. 1499-1503. 1SsN: 1070-9908. po1: 10.1109/LSP.2016.2603342.

10 Jian Zhao. High-Performance Face Recognition Library on PyTorch. https://github.com/ZhaoJ9014/face.evolVe.PyTorch. 2018.

1Szegedy et al., “Going deeper with convolutions”; Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770-778.
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Base models

IR50:
@ an extension of SE-ResNet5012 model
@ pretrained on MS-Celeb-1M® dataset

e pretraining objective functions: ArcFace loss** and Focal loss'®

FaceNet-Incep-ResNet-v1:
@ Inception model with residual connections

e pretraining datasets: “VGGFace2"'10

e pretraining objective functions: person classification loss (cross-entropy) & Triplet loss
12 Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 7132-7141.

13 Adam Harvey and Jules LaPlace. MegaPixels: Origins, Ethics, and Privacy Implications of Publicly Available Face Recognition Image
Datasets. 2019. URL: https://megapixels.cc/ (visited on 04/18/2019).

Deng et al., “ArcFace: Additive Angular Margin Loss for Deep Face Recognition”.
®Lin et al., “Focal Loss for Dense Object Detection” .

Q. Cao et al. “VGGFace2: A dataset for recognising faces across pose and age”. In: International Conference on Automatic Face and
Gesture Recognition. 2018.
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Experiments

Performance of base models before fine-tuning

GARY”
©1%FAR™® ©0.1%FAR
Models Protocol Protocol
T 2 ) 1 2 i
IR50p [96.47 80.42 80.73[44.70 70.32 69.85
IR50y | 67.58 79.22 81.27 [ 40.83 72.62 70.61
FaceNet | 79.83 72.48 72.61[45.04 50.15 49.17

Table: Performance of base models without fine-tuning on training dataset

"GAR = Genuine Acceptance Rate
BFAR = False Acceptance Rate
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Objective functions

The pretrained base models are fine-tuned using training dataset!® with the aid of four
objective functions as follows:

o ldentity Loss

@ Inter-person Triplet Loss
o Category Loss

@ Impersonator Triplet Loss

¥Maneet Singh et al. “Recognizing Disguised Faces in the Wild”. In: |EEE Transactions on Biometrics, Behavior, and Identity Science,
Volume 1, No. 2. 2019, pp. 97-108.
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Objective functions

@ Cross-entropy loss L;4: loss between the softmax probabilty output p; from the model
and the target identity.

1 N M
Lig = —NZZUJ log pjj (1)
i=1 j=1
Here, N = number of face images in the mini-batch, M = number of identities in
train-set.

o Inter-person Triplet Loss L,: To promote small intra-class distance and high
inter-class distance.

N
1
Lerip = m § max(0,d(l;, liy) — d(1;, l;=) + m) (2)
i=1

Here m = margin parameter, d(i,j) = distance between embeddings i & j (Here, we use
Euclidean distance).
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Objective functions

o Category Loss L.,;: To discriminate the impersonator images of the identities. Two
classes namely 1) Normal-validation-disguise class, 2) Impersonator class.

Leat = —ylogp — (1 — y)log(1l - p) (3)

o Impersonator Triplet Loss Lj;,: loss to distinguish a particular identity from it's
impersonator.

N
1
Limp = N E max(O, d(/,', I;+) — Cl'(l,', I,'mp) + m) (4)
i=1

Here m = margin parameter, d(/,j) = distance between embeddings i & j (In this paper,
Euclidean distance).
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Overall Objective function

The overall objective function/total loss is given by:

L =Lig+v2Ltip + V3Limp + VaLcat (5)
The ratios v = 1.0,72 = 0.5,v3 = 0.1,y4 = 0.01 are selected using validation set.
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Ensemble method

L2-normalized feature vectors are extracted from the base models independently
Concatenate them to get the final feature descriptor

Euclidean distance to get distance matrix

Apply Re-ranking?® to get the final distance matrix.

2Zhong et al., “Re-ranking person re-identification with k-reciprocal encoding”.
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Experiments

Performance of ensemble of fine-tuned models

Architecture GAR
a s kol ©1%FAR ©0.1%FAR
=
3 1 ) Protocol Protocol
o4 o 8
= == o 1 2 4 1 2 4
v 80.33 73.80 74.37 | 45.37 52,57 51.87

66.38 81.81 82.27 | 05.71 73.87 72.97
91.93 83.11 83.50 | 52.77 71.86 70.07
93.94 83.16 83.37 | 48.40 70.12 69.05
v 93.61 84.30 84.44 | 53.10 71.24 69.66
v 94.62 85.42 85.56 | 53.44 75.07 73.72
v v 95.79 86.19 86.25 | 56.30 75.25 73.42

AN
<\

SNENENEN

Table: Performance of various configurations of ensemble architectures

Arulkumar, Ajay et al. (IITM, IIITDM) FEBNet December 30, 2!



Experiments

Analysis of objective functions

Losses GAR
©1%FAR ©0.1%FAR
- Q
j & Protocol Protocol
= 1 2 7 1 2 7

9546 86.22 86.42 [ 5495 75.10 73.33
9579 86.37 86.34 | 54.11 75.13 73.37
95.12 86.31 86.39 | 55.63 75.16 73.29
95.79 86.19 86.25 | 56.30 75.25 73.42

<

Table: Performance comparison of various configurations of ensemble architectures with the proposed objective functions: Impersonator
Triplet loss (Limp), Category loss (Lcat)
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Re-ranking?®!

Input: Calculated distance matrix Doy (Q x G),
Q = number of query images, G = number of gallery images

21Zhong et al., “Re-ranking person re-identification with k-reciprocal encoding”.
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Input: Calculated distance matrix Doy (Q x G),

Q = number of query images, G = number of gallery images
Steps:

© k-reciprocal nearest neighbors pruning:

e Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter = k;)
neighbor to the probe

21Zhong et al., “Re-ranking person re-identification with k-reciprocal encoding”.
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Input: Calculated distance matrix Doy (Q x G),

Q = number of query images, G = number of gallery images
Steps:

© k-reciprocal nearest neighbors pruning:

e Only keep the gallery entries which are reciprocal k-reciprocal (hyper parameter = k;)
neighbor to the probe

@ New Feature formulation

o For each image (probe (query) and gallery), formulate a G-dim descriptor

_ | e~dP&) if g € kI-NN of probe p
P& )0 otherwise

21Zhong et al., “Re-ranking person re-identification with k-reciprocal encoding”.
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Re-ranking - continuation

© local query expansion
e each image's feature is approximated by

1 &
£==S fun

© Jaccard distance (Dj,c) calculation

N .
2_j—1 Min(f(p.g): flgi )

N
Zj:l max(f(p,gj)’ f(gi,gj))

djac(p7gi) =1-
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Re-ranking - continuation

© local query expansion
e each image's feature is approximated by

1 &
£==S fun
’ k2;NNI

© Jaccard distance (Dj,c) calculation

N .
2_j—1 Min(f(p.g): flgi )

N
Zj:l max(f(p,gj)’ f(gi,gj))

djac(p7gi) =1-

Essentially, it is similar to,

Count of intersection of neighbours

Count of union of neighbors

@ Distance fusion : Dfinay = (1 - A) Djac + A Dorig
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Experiments

Application of re-ranking in face recognition

Hyper-parameters GAR
©1% FAR ©0.1% FAR
ki | ko A Protocol Protocol
1 2 4 T 2 4
5 0.6 95.46 88.64 88.69 [ 56.97 83.88 82.57
23 0.7 96.30 88.35 88.49 | 57.14 82.88 81.68
6 0.6 05.29 88.74 88.83 | 54.11 84.13 82.88
0.7 95.96 88.41 88.60 | 53.78 83.21 82.00
5 0.6 95.46 88.68 88.75 | 57.64 83.85 82.44
o4 0.7 96.47 88.27 88.42 | 56.97 82.85 81./0
6 0.6 95.83 88.77 88.87 [ 56.13 84.13 82.77
0.7 96.30 88.42 88.54 [ 55.29 83.13 81.90

[FEBNet (No re-ranking) | 95.79 86.19 86.25 ] 56.30 7525 73.42 |

Table: Hyper parameter search for re-ranking method on the final model. Here, k; = the count for finding k-reciprocal nearest neighbors,
ko = count for k-reciprocal nearest neighbor expansion, A = ratio of importance given to original distance matrix with respect to jaccard
distance during re-ranking.
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Comparison with state-of-art

Models

GAR
@1%FAR ©0.1%FAR
Protocol Protocol
1 2 4 1 2 4

MiRA-Face

95.46 90.65 90.62

51.09 80.56 79.26

UMDNets

94.28 86.62 86.75

53.27 74.69 72.90

FE

BNet (Ours)

95.83 88.77 88.87

56.13 84.13 82.77

Table: Comparisons of FEBNet with state-of-art on DFW?2018 dataset

GAR
©0.1% FAR ©0.01% FAR
Model
Protocol Protocol
1 2 3 4 1 2 3 4
ResNet-50 47.6 35.4 46.4 35.9|38.4 16.4 22.4 16.9

LightCNN-29v2

74.4 556 69.2 55.7

51.2 36.9 47.2 36.5

FEBNet (ours)

54.8 92.3 78.8 90.8

42.4 87.7 47.6 73.7

Table: Test dataset (DFW2019 dataset) results
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Conclusion

@ Transfer learning based ensemble model

@ Two new loss functions apart from prevalent person-id based cross entropy and
inter-person triplet loss

@ Application of re-ranking to DFW

Future work: What if we augment the face images with disguising effects? Will it help?
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Thank you!

Arulkumar, Ajay et al. (IITM, IIITDM) FEBNet December 30, 2021




	Challenges
	Observations in the problem domain
	Pipeline
	Pre-processing & Base models
	Model Architecture
	Objective functions
	Post-Processing

	Results
	Conclusions and Future work

